科学发现往往充满了偶然性,六方科技做的是碳化硅/碳化钽涂层产品,却偶然合成了Ta2C单晶,首次明确了它的超导电性,正所谓无心插柳柳成荫。
TaC涂层使用温度超过2000摄氏度,被用于第三代半导体SiC长晶及外延的零部件。有趣的是,TaC同时也是一种超导体,超导转变温度10.3K[1]。金属钽(Ta)还有另一种碳化物,Ta2C,关于它的超导性质却长期存在争议。Hardy等人早在1954年就报道了Ta2C超导转变温度为3.26K[2]。然而,Giorgi等人却在9年后的研究中发现,Ta2C在温度低于1.98K之下仍然没有发现超导迹象[3]。因此,Ta2C是否超导是一个悬而未决的科学问题,问题的难点在于研究者长期以来都无法合成高质量Ta2C单晶。
图1:(a)有限渗碳机理示意图。(b)钽箔碳化和超400微米和1200微米的TaC涂层件。
六方科技长期从事的是碳化硅,碳化钽涂层产品的研发和生产。尽管公司的主业是生产制造,但是工程师们对材料相关的基础科学问题保持着强烈的探索欲望。尽管常用的TaC涂层是通过CVD沉积获得的,公司也同时研究Ta金属的碳化获得TaC涂层的方法(图1)。在渗碳实验当中,工程师偶然发现除了生成TaC涂层,这一方法也能获得Ta2C的成分。研究发现钽的渗碳是一个复杂的固态反应过程,包含碳梯度扩散与相变:在富碳环境中,钽表面直接接触碳源形成TaC相,次表层区域则通过梯度碳扩散生成Ta2C相。当钽基体尺寸过小或保温时间过长时,往往会导致钽完全转化为TaC相,如图1 (a) 所示。
图2. (a) Ta2C晶体结构示意图。(b)钽棒碳化后的产物的示意图。(c) 对应(b)图中黑色虚线框区域的SEM图像,可见圆柱状Ta2C外围包裹着多晶层。(d) Ta2C单晶的XRD θ-2θ 扫描图谱。插图为毫米坐标纸上Ta2C单晶的实物照片。(e) Ta2C 单晶的解理面的低能电子衍射(LEED)图像。
在合适的碳化速率和钽件尺寸下,该团队最终在6mm直径的钽棒内部得到约为3mm直径的大尺寸、高质量Ta2C单晶,相应晶体表征如图2所示。有了高质量Ta2C单晶,关于Ta2C是否超导的科学问题迎刃而解,我们的研究表明:Ta2C是一种Ⅱ型超导体,其临界温度为4.1K,上临界场0.153T,下临界场21.8 Oe。经过退磁因子修正后,超导体积分数估算超过65%,表明样品具有体超导性(图3)。
图3.(a-b)输运数据。(c-d)磁测量数据。
图4.(a-b)分别为Ta2C的不考虑和考虑SOC时的计算能带。(c-d)仅含体态、同时包含体态与表面态的表面态色散谱。
TaC具有立方相结构,很难获得平整的解理面,导致TaC电子结构的直接测量长期以来没有研究报道。与TaC不同,Ta2C具有层状结构,容易解理,使得实验测量其电子结构成为可能。通过和甬江实验室及浙江工业大学合作,我们发现,Ta2C能带结构具有不平庸的拓扑性质(Topologically Nontrivial)。如图4(a-d)所示,在不考虑SOC时,有三条能带穿过费米能级,相互交叉或接触。当考虑SOC后,沿Γ-A方向的简并能带(红色箭头标记)和LH上的交叉点(红色圆圈标记)发生劈裂,能带相互分离,产生显著的带隙。带隙的Z2拓扑指数为(1:000),表明Ta2C具有强拓扑特性。体边对应关系表明,非平庸的拓扑带隙可以产生鲁棒的表面态。Ta2C的表面色散谱如图4(c-d)所示,带隙中存在多个非平庸表面态(如绿色箭头所示)。
超导性和非平庸拓扑的共存使得层状Ta2C成为探索拓扑超导性和马约拉纳束缚态的潜在候选材料。上述研究成果以”Ta2C: A possible candidate of topological superconductor”发表在SCI期刊《Journal of Alloys and Compounds》(JCR一区、中科院二区,影响因子5.8)。